Economics in Fisheries Management

LPWM2005 Fisheries Management

Dr Colin Hunt Honorary Fellow in Economics The University of Queensland

Lecture 1. The bioeconomic model (PowerPoint)

The University of Queensland, 16 August, 2011

Accessing Notes to slides in pdf

- Go to left hand bar, click on the 'Layers' icon (third from top);
- 2. Activate the 'Presentation notes' box;
- 3. To read Note, put cursor over 'speech' icon when it appears in top left corner of the slide.

Biological growth curve

Growth function and MSY

Overfishing

Overfished

Fig 4. Yield curve for a fishery: harvest and growth rate of stock

Overfished

Fig 4. Yield curve for a fishery: harvest and growth rate of stock

Fig. 4a: Open access fishery

Resource rent and Open access

Revenue & Cost H_{oa} Ś **Under open access** rent is driven to zero as more and more fishing effort is applied seeking rents, until all rent is exhausted at E_{oa.} and only "normal" profits are made ("normal" profit being wages plus interest on capital).

Effort (E) (number of boat days)

Fig. 4a: Open access fishery

Fig 6: Marginal conditions and profit maximisation

Decision rules in managing a fishery

Increase catch

Value of increased catch > value of reduced future catches

Decrease catch

Value of decreased catch < value of increased future catches

Note, it is general practise to apply a discount to the stream of reduced or increased future catches converting them to a single present value.

Applying the Precautionary Principle

Stock information poor

MSY uncertain

Examples Orange roughy Southern bluefin tuna New fisheries

Regulation and fishing costs

Fig. 4a: Open access fishery

Economic efficiency demands more than achieving optimal yields and stock. It also requires that the yield is achieved at minimum use of scarce resources, i.e. cost.

Individual transferable quotas (ITQs)

Benefits

Limitations

Efficient in single species fishery

May be ineffective in multi-species fishery

Preservation value - tax on fishing

Fig. 8: Social optimum with preservation value

Bycatch "Technical innovation may reduce the level of bycatch. However, unless there is a general awareness of the issue it is unlikely that bycatch issues will actually be rated important enough by authorities responsible for fisheries management to reduce or close a fishery." Annual catch of turtles sharks gine worldwide $\frac{1}{2}00.0901$ billfish

eturtles

Red List indices for selected species-groups

Figure 9: Seabird bycatch

Jurisdictions and management

Maximum Economic Yield (MEY) is always less than Maximum Sustainable Yield (MSY) in a fishery.

Show that MEY is always less than MSY with a labelled diagram.

Key Words

EEZ **Bioeconomic model** Maximum sustainable yield (MSY) High seas TAC **Resource rent** ITQs **Open access/Rent dissipation** Maximum economic yield (MEY) **Precautionary principle Decision rules** Overfishing **Bycatch** Overfished